skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Jia, Xiaowei"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Physics-guided machine learning (PGML) has become a prevalent approach in studying scientific systems due to its ability to integrate scientific theories for enhancing machine learning (ML) models. However, most PGML approaches are tailored to isolated and relatively simple tasks, which limits their applicability to complex systems involving multiple interacting processes and numerous influencing features. In this paper, we propose a Physics-Guided Foundation Model (PGFM) that combines pre-trained ML models and physics-based models and leverages their complementary strengths to improve the modeling of multiple coupled processes. To effectively conduct pre-training, we construct a simulated environmental system that encompasses a wide range of influencing features and various simulated variables generated by physics-based models. The model is pre-trained in this system to adaptively select important feature interactions guided by multi-task objectives. We then fine-tune the model for each specific task using true observations, while maintaining consistency with established physical theories, such as the principles of mass and energy conservation. We demonstrate the effectiveness of this methodology in modeling water temperature and dissolved oxygen dynamics in real-world lakes. The proposed PGFM is also broadly applicable to a range of scientific fields where physics-based models are being used. 
    more » « less
    Free, publicly-accessible full text available April 11, 2026
  2. This work introduces a novel graph neural networks (GNNs)-based method to predict stream water temperature and reduce model bias across locations of different income and education levels. Traditional physics-based models often have limited accuracy because they are necessarily approximations of reality. Recently, there has been an increasing interest of using GNNs in modeling complex water dynamics in stream networks. Despite their promise in improving the accuracy, GNNs can bring additional model bias through the aggregation process, where node features are updated by aggregating neighboring nodes. The bias can be especially pronounced when nodes with similar sensitive attributes are frequently connected. We introduce a new method that leverages physical knowledge to represent the node influence in GNNs, and then utilizes physics-based influence to refine the selection and weights over the neighbors. The objective is to facilitate equitable treatment over different sensitive groups in the graph aggregation, which helps reduce spatial bias over locations, especially for those in underprivileged groups. The results on the Delaware River Basin demonstrate the effectiveness of the proposed method in preserving equitable performance across locations in different sensitive groups. 
    more » « less
    Free, publicly-accessible full text available April 11, 2026
  3. Water temperature can vary substantially even across short distances within the same sub-watershed. Accurate prediction of stream water temperature at fine spatial resolutions (i.e., fine scales, ≤ 1 km) enables precise interventions to maintain water quality and protect aquatic habitats. Although spatiotemporal models have made substantial progress in spatially coarse time series modeling, challenges persist in predicting at fine spatial scales due to the lack of data at that scale. To address the problem of insufficient fine-scale data, we propose a Multi-Scale Graph Learning (MSGL) method. This method employs a multi-task learning framework where coarse-scale graph learning, bolstered by larger datasets, simultaneously enhances fine-scale graph learning. Although existing multi-scale or multi-resolution methods integrate data from different spatial scales, they often overlook the spatial correspondences across graph structures at various scales. To address this, our MSGL introduces an additional learning task, cross-scale interpolation learning, which leverages the hydrological connectedness of stream locations across coarse- and fine-scale graphs to establish cross-scale connections, thereby enhancing overall model performance. Furthermore, we have broken free from the mindset that multi-scale learning is limited to synchronous training by proposing an Asynchronous Multi-Scale Graph Learning method (ASYNC-MSGL). Extensive experiments demonstrate the state-of-the-art performance of our method for anti-sparse downscaling of daily stream temperatures in the Delaware River Basin, USA, highlighting its potential utility for water resources monitoring and management. 
    more » « less
    Free, publicly-accessible full text available April 11, 2026
  4. Free, publicly-accessible full text available March 1, 2026
  5. Abstract Prediction of dynamic environmental variables in unmonitored sites remains a long-standing challenge for water resources science. The majority of the world’s freshwater resources have inadequate monitoring of critical environmental variables needed for management. Yet, the need to have widespread predictions of hydrological variables such as river flow and water quality has become increasingly urgent due to climate and land use change over the past decades, and their associated impacts on water resources. Modern machine learning methods increasingly outperform their process-based and empirical model counterparts for hydrologic time series prediction with their ability to extract information from large, diverse data sets. We review relevant state-of-the art applications of machine learning for streamflow, water quality, and other water resources prediction and discuss opportunities to improve the use of machine learning with emerging methods for incorporating watershed characteristics and process knowledge into classical, deep learning, and transfer learning methodologies. The analysis here suggests most prior efforts have been focused on deep learning frameworks built on many sites for predictions at daily time scales in the United States, but that comparisons between different classes of machine learning methods are few and inadequate. We identify several open questions for time series predictions in unmonitored sites that include incorporating dynamic inputs and site characteristics, mechanistic understanding and spatial context, and explainable AI techniques in modern machine learning frameworks. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  6. Free, publicly-accessible full text available January 1, 2026
  7. Accurate long-term predictions are the foundations for many machine learning applications and decision-making processes. Traditional time series approaches for prediction often focus on either autoregressive modeling, which relies solely on past observations of the target “endogenous variables”, or forward modeling, which considers only current covariate drivers “exogenous variables”. However, effectively integrating past endogenous and past exogenous with current exogenous variables remains a significant challenge. In this paper, we propose ExoTST, a novel transformer-based framework that effectively incorporates current exogenous variables alongside past context for improved time series prediction. To integrate exogenous information efficiently, ExoTST leverages the strengths of attention mechanisms and introduces a novel cross-temporal modality fusion module. This module enables the model to jointly learn from both past and current exogenous series, treating them as distinct modalities. By considering these series separately, ExoTST provides robustness and flexibility in handling data uncertainties that arise from the inherent distribution shift between historical and current exogenous variables. Extensive experiments on real-world carbon flux datasets and time series benchmarks demonstrate ExoTST's superior performance compared to state-of-the-art baselines, with improvements of up to 10% in prediction accuracy. Moreover, ExoTST exhibits strong robustness against missing values and noise in exogenous drivers, maintaining consistent performance in real-world situations where these imperfections are common. 
    more » « less
    Free, publicly-accessible full text available December 9, 2025
  8. Free, publicly-accessible full text available February 1, 2026
  9. Free, publicly-accessible full text available December 9, 2025
  10. Free, publicly-accessible full text available December 16, 2025